摘要:“渦旋混凝給水處理技術(shù)”是渦旋根據(jù)多相流動物系反應(yīng)控制慣性效應(yīng)理論,結(jié)合給水工程實踐,混凝經(jīng)近十年的處理研究而發(fā)明的。該技術(shù)涉及了給水處理中混合、技術(shù)絮凝反應(yīng)、分析沉淀三大主要工藝。渦旋
關(guān)鍵詞:渦旋混凝給水處理技術(shù)
一、混凝概述
“渦旋混凝給水處理技術(shù)”是處理根據(jù)多相流動物系反應(yīng)控制慣性效應(yīng)理論,結(jié)合給水工程實踐,技術(shù)經(jīng)近十年的分析研究而發(fā)明的。該技術(shù)涉及了給水處理中混合、渦旋絮凝反應(yīng)、混凝沉淀三大主要工藝。處理
理論上,技術(shù)首次從湍流微結(jié)構(gòu)的分析尺度即亞微觀尺度對混凝的動力學(xué)問題進(jìn)行了深入了研究,提出了“慣性效應(yīng)”是絮凝的動力學(xué)致因,湍流剪切力是絮凝反應(yīng)中決定性的動力學(xué)因素,并建立了絮凝的動力相似準(zhǔn)則;首次指出擴(kuò)散過程應(yīng)分為宏觀擴(kuò)散與亞微觀擴(kuò)散兩個不同的物理過程,而亞微觀擴(kuò)散的動力學(xué)致因是慣性效應(yīng),特別是湍流微渦旋的離心慣性效應(yīng)。由于新理論克服了現(xiàn)有傳統(tǒng)給水處理技術(shù)理論上的缺陷和實踐上的不足,因而導(dǎo)致了在給水處理技術(shù)上的重大突破。
實踐中,發(fā)明了列管式混合器、翼片隔板反應(yīng)設(shè)備、接觸絮凝斜板沉淀設(shè)備等。目前這項新技術(shù)已在全國近50多家水廠成功地推廣使用,取得了明顯的經(jīng)濟(jì)效益和社會效益。工程實踐證明:此項技術(shù)用于新建水廠,工藝部分基建投資可節(jié)約20~30%;用于舊水廠技術(shù)改造,可使處理水量增加75%~100%,而其改造投資僅為與凈增水量同等規(guī)模新建水廠投資的30%~50%。采用此項技術(shù)可使出水濁度低于3度,濾后水接近0度,可節(jié)省濾池反沖洗水量50%,節(jié)省藥劑投加量30%,大大降低了運行費用和制水成本。
這項技術(shù)適應(yīng)廣泛,不僅對低溫低濁、汛期高濁水處理效果好,同時,對微污染原水具有較好的處理效果。可利用最小投資,取得最大效益,充分發(fā)揮現(xiàn)有供水設(shè)施的潛力,在短時間內(nèi)緩解城市供水短缺狀況,促進(jìn)城市的經(jīng)濟(jì)發(fā)展。
二、“渦旋混凝給水處理技術(shù)”的工作機(jī)理
(一)混合
混合是反應(yīng)第一關(guān),也是非常重要的一關(guān),在這個過程中應(yīng)使混凝劑水解產(chǎn)物迅速地擴(kuò)散到水體中的每一個細(xì)部,使所有膠體顆粒幾乎在同一瞬間脫穩(wěn)并凝聚,這樣才能得到好的絮凝效果。因為在混合過程中同時產(chǎn)生膠體顆粒脫穩(wěn)與凝聚,可以把這個過程稱為初級混凝過程,但這個過程的主要作用是混合,因此都稱為混合過程。
混合問題的實質(zhì)是混凝劑水解產(chǎn)物在水中的擴(kuò)散問題,使水中膠體顆粒同時脫穩(wěn)產(chǎn)生凝聚,是取得好的絮凝效果的先決條件,也是節(jié)省投藥量的關(guān)鍵。傳統(tǒng)的機(jī)械攪拌混合與孔室混合效果較差。近幾年,國內(nèi)外采用管式靜態(tài)混合器使混合效果有了比較明顯地提高,但由于人們對于多相物系反應(yīng)中亞微觀傳質(zhì)以及湍流微結(jié)構(gòu)在膠體顆粒初始凝聚時的作用認(rèn)識不清,故也妨礙了混凝效果的進(jìn)一步提高。混凝劑水解產(chǎn)物在混合設(shè)備中的擴(kuò)散應(yīng)分為兩類:(1)宏觀擴(kuò)散,即使混凝劑水解產(chǎn)物擴(kuò)散到水體各個宏觀部位,其擴(kuò)散系數(shù)很大,這部分?jǐn)U散是由大渦旋的動力作用導(dǎo)致的,因而宏觀擴(kuò)散可以短時間內(nèi)完成;(2)亞微觀擴(kuò)散,即濁凝劑水解產(chǎn)物在極鄰近部位的擴(kuò)散,這部分?jǐn)U散系數(shù)比宏觀擴(kuò)散小幾個數(shù)量級。亞微觀擴(kuò)散的實質(zhì)是層流擴(kuò)散。因此使混凝劑水解產(chǎn)物擴(kuò)散到水體第一個細(xì)部是很困難的。在水處理反應(yīng)中亞微觀擴(kuò)散是起決定性作用的動力學(xué)因素。
例如高濁水的處理中,混凝劑水解產(chǎn)物的亞微觀擴(kuò)散成為控制處理效果的決定性因素。由于混凝劑的水解產(chǎn)物向極鄰近部擴(kuò)散的速度非常慢,在高濁度期水中膠體顆粒數(shù)量非常多,因此沒等混凝劑水解產(chǎn)物在極鄰近部位擴(kuò)散,就被更靠近它的膠體顆粒接觸與捕捉。這樣就形成高濁時期有些地方混凝劑水解產(chǎn)物局部集中,而有些地方還根本沒有。混凝劑局部集中的地方礬花迅速長大,形成松散的礬花顆粒,遇到強(qiáng)的剪切力吸附橋則被剪斷,出現(xiàn)了局部過反應(yīng)現(xiàn)象。藥劑沒擴(kuò)散到的地方膠體顆粒尚未脫穩(wěn),這部分絮凝反應(yīng)勢必不完善。這一方面是因為它們跟不上已脫穩(wěn)膠體顆粒的反應(yīng)速度,另一方面是因為混凝劑集中區(qū)域礬花迅速不合理長大,也使未脫穩(wěn)的膠體顆粒失去了反應(yīng)碰撞條件。這樣就導(dǎo)致了高濁時期污泥沉淀性能很差,水廠出水水質(zhì)不能保證。按傳統(tǒng)工藝建造的水廠,在特大高濁時都需大幅度降低其處理能力,以保證出水水質(zhì)。這是由于過去工程界的人們對亞微觀傳質(zhì)現(xiàn)象不認(rèn)識,對其傳質(zhì)的動力學(xué)致因也不認(rèn)識,因此傳統(tǒng)的混合設(shè)備無能力解決高濁時混合不均問題,這不僅使水廠在特大高濁時大幅度降低處理能力,而且造成藥劑的嚴(yán)重消費和造成出水的pH值過低。
亞微觀擴(kuò)散究其實質(zhì)是層流擴(kuò)散,其擴(kuò)散規(guī)律與用蜚克定律描寫的宏觀擴(kuò)散規(guī)律完全不同。當(dāng)研究尺度接近湍流微結(jié)構(gòu)尺度時,物質(zhì)擴(kuò)散過程不一定是從濃度高的地方往低的地方擴(kuò)散。在湍流水流中亞微觀傳質(zhì)主要是由慣性效應(yīng)導(dǎo)致的物質(zhì)遷移造成的,特別是湍流微渦旋的離心慣性效應(yīng)。我們的管式微渦初級混凝設(shè)備,就是利用高比例高強(qiáng)度微渦旋的離心慣性效應(yīng)來克服亞微觀傳質(zhì)阻力,增加亞微觀傳質(zhì)速率。生產(chǎn)使用證明這兩種設(shè)備在高濁時混合效果良好,不僅比傳統(tǒng)的靜態(tài)混合器可大幅度增加處理能力,也大大地節(jié)省了投藥量。
(二)反應(yīng)
絮凝是給水處理的最重要的工藝環(huán)節(jié),濾池出水水質(zhì)主要由絮凝效果決定的。傳統(tǒng)廊道反應(yīng)、回轉(zhuǎn)孔室反應(yīng)以及回轉(zhuǎn)組合式隔板反應(yīng)的絮凝工藝,水在設(shè)備中停留20~30分鐘,水中尚有很多絮凝不完善的小顆粒。近年來,國內(nèi)出現(xiàn)了普通網(wǎng)格反應(yīng);國外推出了折板式與波形板反應(yīng)設(shè)備,使絮凝效果有了比較明顯地改善。但由于人們對絮凝的動力學(xué)本質(zhì)認(rèn)識問題,妨礙了絮凝效果的進(jìn)一步提高。
1.絮凝的動力學(xué)致因
絮凝長大過程是微小顆粒接觸與碰撞的過程。絮凝效果的好壞取決于下面兩個因素:一是混凝劑水解后產(chǎn)生的高分子絡(luò)合物形成吸附架橋的聯(lián)結(jié)能力,這是由混凝劑的性質(zhì)決定的;二是微小顆粒碰撞的幾率和如何控制它們進(jìn)行合理的有效碰撞,這是由設(shè)備的動力學(xué)條件所決定的。導(dǎo)致水流中微小顆粒碰撞的動力學(xué)致因是什么,人們一直未搞清楚。水處理工程學(xué)科認(rèn)為速度梯度是水中微小顆粒碰撞的動力學(xué)致因。按照這一理論,要想增加碰撞幾率就必須增加速度梯度,增加速度梯度就必須增加水體的能耗,也就是增加絮凝池的流速,但是絮凝過程是速度受限過程,隨著礬花的長大,水流速度應(yīng)不斷減少。
絮凝的動力學(xué)致因究竟是什么?是慣性效應(yīng)。因為水是連續(xù)介質(zhì)。水中的速度分布是連續(xù)的,沒有任何跳躍,水中兩個質(zhì)點相距越近其速度差越小,當(dāng)兩個質(zhì)點相距為無究小時,其速度差亦為無窮小,即無速度差。水中的顆粒尺度非常小,比重又與水相近,故此在水流中的跟隨性很好。如果這些顆粒隨水流同步運動,由于沒有速度差就不會發(fā)生碰撞。由此可見要想使水流中顆粒相互碰撞,就必須使其與水流產(chǎn)生相對運動,這樣水流就會對顆粒運動產(chǎn)生水力阻力。由于不同尺度顆粒所受水力阻力不同,所以不同尺度顆粒之間就產(chǎn)生了速度差。這一速度差為相鄰不同尺度顆粒的碰撞提供了條件。如何讓水中顆粒與水流產(chǎn)生相對運動呢?最好的辦法是改變水流的速度。因為水的慣性(密度)與顆粒的慣性(密度)不同,當(dāng)水流速度變化時它們的速度變化(加速度)也不同,這就使得水與其中固體顆粒產(chǎn)生了相對運動。為相鄰不同尺度顆粒碰撞提供了條件。這就是慣性效應(yīng)的基本理論。
改變速度方法有兩種:一是改變水流時平均速度大小。水力脈沖澄清池、波形板反應(yīng)池、孔室反應(yīng)池以及濾池的微絮凝主要就是利用水流時平均速度變化形成慣性效應(yīng)來進(jìn)行絮凝;二是改變水流方向。因為湍流中充滿著大大小小的渦旋,因此水流質(zhì)點在運動時不斷地在改變自己的運轉(zhuǎn)方向。當(dāng)水流作渦旋運動時在離心慣性力作用下固體顆粒沿徑向與水流產(chǎn)生相對運動,為不同尺度顆粒沿湍流渦旋的徑向碰撞提供了條件。不同尺度顆粒在湍流渦旋中單位質(zhì)量所受離心慣性力是不同的,這個作用將增加不同尺度顆粒在湍流渦旋徑向碰撞的幾率。渦旋越小,其慣性力越強(qiáng),慣性效應(yīng)越強(qiáng)絮凝作用就越好。由此可見湍流中的微小渦旋的離心慣性效應(yīng)是絮凝的重要的動力學(xué)致因。
由此可看出,如果能在絮凝池中大幅度地增加湍流微渦旋的比例,就可以大幅度地增加顆粒碰撞次數(shù),有效地改善絮凝效果。這可以在絮凝池的流動通道上增設(shè)多層翼片隔板的辦法來實現(xiàn)。由于水流的慣性作用,使過水流的大渦旋變成小渦旋,小渦旋變成更小的渦旋。
增設(shè)翼片隔板后有如下作用:(1)水流通過該區(qū)段是速度激烈變化的區(qū)段,也是慣性效應(yīng)最強(qiáng)、顆粒碰撞幾率最高的區(qū)段;(2) 翼片隔板之后湍流的渦旋尺度大幅度減少,微渦旋比例增強(qiáng),渦旋的離心慣性效應(yīng)增加,有效地增加了顆粒碰撞次數(shù);(3)由于水流的慣性作用,礬花產(chǎn)生強(qiáng)烈的變形,使礬花中處于吸附能級低的部分,由于其變形揉動作用達(dá)到高吸能級的部位,這樣就使得通過該區(qū)之后礬花變得更密實。
2.礬花的合理的有效碰撞
要達(dá)到好的絮凝效果除了要有顆粒大量碰撞之外,還需要控制顆粒合理的有效碰撞。使顆粒凝聚起來的碰撞稱之為有效碰撞。一方面,如果在絮凝中顆粒凝聚長大得過快會出現(xiàn)兩個問題:(1)礬花長得過快其強(qiáng)度則減弱,在流動過程中遇到強(qiáng)的剪切就會使吸附架橋被剪斷,被剪斷的吸附架橋很難再連續(xù)起來,這種現(xiàn)象稱之為過反應(yīng)現(xiàn)象,應(yīng)該被絕對禁止;(2)一些礬花過快的長大會使水中礬花比表面積急劇減少,一些反應(yīng)不完善的小顆粒失去了反應(yīng)條件,這些小顆粒與大顆粒碰撞幾率急劇減小,很難再長大起來。這些顆粒不僅不能為所截留,也很難為濾池截留。另一方面,絮凝池中礬花顆粒也不能長得過慢,礬花長得過慢雖然密實,但當(dāng)其達(dá)到時,還有很多顆粒沒有長到沉淀尺度,出水水質(zhì)也不會好。此由看到在絮凝池設(shè)計中應(yīng)控制礬花顆粒的合理長大。
礬花的顆粒尺度與其密實度取決兩方面因素:其一是混凝水解產(chǎn)物形成的吸附架橋的聯(lián)結(jié)能力;其二是湍流剪切力。正是這兩個力的對比關(guān)系決定了礬花顆粒尺度與其密實度。吸附架橋的聯(lián)結(jié)能力是由混凝劑性質(zhì)決定的,而湍流的剪切力是由構(gòu)筑物創(chuàng)造的流動條件所決定的。如果在絮凝池的設(shè)計中能有效的控制湍流剪切力,就能很好的保證絮凝效果。
多相流動物系反應(yīng)控制理論的提出,真正建立起水處理工藝中的動力相似。使我們認(rèn)識到湍流剪切力是絮凝過程中的控制動力學(xué)因素,如果在大小兩個不同的絮凝工藝中,其湍流剪切力相等,那么具有同樣聯(lián)結(jié)強(qiáng)度的礬花顆粒可以在兩個不同尺度的絮凝過程中同時存在,這在某種意義上也就實現(xiàn)了兩個絮凝過程絮凝效果的相似。弗羅德數(shù)可以作為相似準(zhǔn)則數(shù),可以表明湍流剪切力的大小,兩個尺度不同的絮凝過程當(dāng)其弗羅德數(shù)相等時,其湍流剪切力就近似相等,絮凝效果就基本相似。但只控制湍流剪切力相等并不能完全控制絮凝效果的相似,因為湍流剪切力相等時兩個不同的絮凝過程的礬花聯(lián)結(jié)強(qiáng)度相等,但礬花的密實度與沉淀性能卻不一定相同。礬花的密實程度可用湍動度來控制,湍動度值越大表明在固定時間內(nèi)流動固定空間點的渦流數(shù)量越多,渦旋強(qiáng)度越大,礬花也越密實。在實際工作中是不可能測定湍動度的。慶幸的是當(dāng)湍流剪切力相等時,尺度越大的絮凝池其水流速度也越高,因此礬花的碰撞強(qiáng)度越大,形成的礬花越密實,這已為試驗與生產(chǎn)實踐的所證實。這樣就可以保證把小尺度的試驗結(jié)果按照弗羅德數(shù)相等來放大,放大后的絮凝效果會更好、更可靠。因而我們也可以通過科學(xué)地布設(shè)翼片隔板,通過弗羅德數(shù)這個相似準(zhǔn)則,來控制絮凝過程中水流的剪切力和湍動度,形成易于沉淀的密實礬花。
(三)沉淀
沉淀設(shè)備是水處理工藝中泥水分離的重要環(huán)節(jié),其運行狀況直接影響出水水質(zhì)。
傳統(tǒng)的平流優(yōu)點是構(gòu)造簡單,工作安全可靠;缺點是占地面積大,處理效率低,要想降低濾前水的濁度就要較大地加大的長度。淺池理論的出現(xiàn)使沉淀技術(shù)有了長足的進(jìn)步。七十年代以后,我國各地水廠普遍使用了斜管,沉淀效率得到了大幅度提高。但經(jīng)過幾十年應(yīng)用其可靠性遠(yuǎn)不如平流,特別是高濁時期、低溫低濁時期以及投藥不正常時期。
傳統(tǒng)沉淀理論認(rèn)為斜板、斜管中水流處于層流狀態(tài)。其實不然,實際上在斜管中水流是有脈動的,這是因為當(dāng)斜管中的大礬花顆粒在沉淀中與水產(chǎn)生相對運動,會在礬花顆粒后面產(chǎn)生小旋渦,這些旋渦的產(chǎn)生與運動造成了水流的脈動。這些脈動對于大的礬花顆粒的沉淀無什么影響,對于反應(yīng)不完全小顆粒的沉淀起到頂托作用,故此此也就影響了出水水質(zhì)。為了克服這一現(xiàn)象,抑制水流的脈動,我們推動了接觸絮凝斜板沉淀設(shè)備。這一設(shè)備還有下面一些優(yōu)點:(1)由于間距明顯減少,礬花沉淀距離也明顯減少,使更多小顆粒可以沉淀下來;(2)由于間距減少,水力阻力增大,使之占水流在中水力阻力的主要部分,這樣中流量分布均勻,與斜管相比明顯地改善了沉淀條件;(3)這種設(shè)備由于下面幾個原因其排泥性能遠(yuǎn)優(yōu)于其他形式的淺池;(a)這種設(shè)備基本無側(cè)向約束;(b)這種設(shè)備沉淀面積與排泥面積相等;對普通斜管來說排泥面積只占其沉淀面積的一半,在特殊時期如高濁期,低溫濁期或加藥失誤時期污泥沉降性能、特別是排泥性能明顯變壞,在斜管排泥面的邊緣處由于沉積數(shù)量與斜面上滑落下來的污泥數(shù)量大于排走的數(shù)量,造成污泥的堆積。所以一旦在斜管的角落處產(chǎn)生污泥的堆積,
這淹使瓜面減少,上升流速增加,增加了污泥下滑的頂托力,進(jìn)一步增加污泥堆積。所以一旦在斜管角落處產(chǎn)生污泥的堆積,就產(chǎn)生了污泥堆積的惡性循環(huán)。這種作用開始時由于斜管上升流速的增加,沉淀效果變壞,沉后水濁度增高,當(dāng)污泥堆積到一定程度時,由于上升流速的提高,可以把已積沉在斜管上的污泥卷起,使水質(zhì)嚴(yán)重惡化。正是這一原因才使得南方很多地區(qū)又由斜管改為平流。而小間距斜板其排泥面積是普通斜管的4倍多,單位面積排泥負(fù)荷尚不到斜管的1/4,故在任何時期排泥均無障礙。